- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Kramer, Matthew J. (4)
-
Ma, Tao (3)
-
Zhou, Lin (3)
-
Al Hasan, Naila (1)
-
Bellaiche, Laurent (1)
-
Chen, Minda (1)
-
Cissé, Cheikh (1)
-
Cui, Jun (1)
-
Da, Bo (1)
-
Fan, Zhongming (1)
-
Hlova, Ihor Z (1)
-
Ho, Kai-Ming (1)
-
Hou, Huilong (1)
-
Huang, Wenyu (1)
-
Hwang, Yunho (1)
-
Johnson, Duane D. (1)
-
Johnson, Nathan S. (1)
-
Kim, Tae-Hoon (1)
-
Kramer, Matthew J (1)
-
Kuchi, Rambabu (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Meng, Fanqiang; Sun, Yang; Zhang, Feng; Da, Bo; Wang, Cai-Zhuang; Kramer, Matthew J.; Ho, Kai-Ming; Sun, Dongbai (, Physical Review Materials)null (Ed.)
-
Ma, Tao; Fan, Zhongming; Xu, Bin; Kim, Tae-Hoon; Lu, Ping; Bellaiche, Laurent; Kramer, Matthew J.; Tan, Xiaoli; Zhou, Lin (, Physical Review Letters)
-
Ma, Tao; Wang, Shuai; Chen, Minda; Maligal-Ganesh, Raghu V.; Wang, Lin-Lin; Johnson, Duane D.; Kramer, Matthew J.; Huang, Wenyu; Zhou, Lin (, Chem)
-
Hou, Huilong; Simsek, Emrah; Ma, Tao; Johnson, Nathan S.; Qian, Suxin; Cissé, Cheikh; Stasak, Drew; Al Hasan, Naila; Zhou, Lin; Hwang, Yunho; et al (, Science)Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors—enhancing the materials efficiency by a factor of four to seven—and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life.more » « less
An official website of the United States government
